If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+24x+3840=0
a = -3; b = 24; c = +3840;
Δ = b2-4ac
Δ = 242-4·(-3)·3840
Δ = 46656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{46656}=216$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-216}{2*-3}=\frac{-240}{-6} =+40 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+216}{2*-3}=\frac{192}{-6} =-32 $
| 3p÷4=12 | | 2x^2-100x+672=0 | | (7-2y)/2-(2/5)(2-y)=1(1/4) | | 2x^2-102x+672=0 | | (7-2y)/2-2/5(2-y)=5/4 | | (5x+1)/3=7 | | 5x+1÷3=7 | | 2(3y+4)=3(4y+1) | | 3(x+11)=21 | | 5x-3÷2=62+4x | | 5x-3x÷2=62+4x | | 1÷3x-8=6 | | (8xX)+(10xY)=90 | | 2√5x2-3x-√5=0 | | 2/3v-1/4v=0 | | 0.3(6-x)=0.4(8-x) | | 3(5x+6)=15x+6 | | -3=7(y−79 ) | | X2+12x+135=0 | | 11=m+7m= | | 3+14x-4-7x=7x-1 | | 24r=18 | | 28d=7 | | 56d=8 | | 7+4x=-2=x | | 5x+6/23=2 | | x^-4x+12=0 | | 6x-17=2x+6 | | 4(x-3)/4-6x-4/8=1 | | a/8+1/4(a-8)=1 | | 13−7c=8c−2 | | a+2/5+a+3/3=3 |